

DATABASE
Database:

A database is a collection of information that's related to a particular subject or purpose, such as tracking customer orders or maintaining a music collection. If your database isn't stored on a computer, or only parts of it are, you may be tracking information from a variety of sources that you have to coordinate and organize yourself.

For example, suppose the phone numbers of your suppliers are stored in various locations: in a card file containing supplier phone numbers, in product information files in a file cabinet, and in a spreadsheet containing order information. If a supplier's phone number changes, you might have to update that information in all three places. In a database, however, you only have to update that information in one place — the supplier's phone number is automatically updated wherever you use it in the database

CREATE DATABASE
Syntax:

CREATE DATABASE database_name

ON

[([NAME = logical_file_name,]

FILENAME = ‘physical_file_name’

[, SIZE = size]

[, MAXSIZE = {max_size | UNLIMITED}]
[, FILEGROWTH = growth_increment]) [, . . . n]]

[LOG ON

[([NAME = logical_file_name,]

FILENAME = ‘os_file_name’

[, SIZE = size]

[, MAXSIZE = {max_size | UNLIMITED}]

[, FILEGROWTH = growth_incriment]) [, . . . n]]]

Statement:

CREATE DATABASE Company

ON

(NAME = Company_Data,

FILENAME = ‘D:\Company_Data.mdf’,

SIZE = 8MB,

MAXSIZE = 16MB,

FILEGROWTH = 4MB)

LOG ON

(NAME = Company_Log,

FILENAME = ‘D:\Company_Log.ldf’,

SIZE = 2MB,

MAXSIZE = 4MB,

FILEGROWTH = 2MB)

Note: - Data and Log Files
A SQL Server database is made of at least two physical files: one data file and one log file. The data file contains data and the log file contains the transaction log.

It is no longer possible to create a database with the transaction log stored in the data file as it was in versions of SQL Server before SQL Server 7.

Data and Log files

[image: image5.bmp]

While at least one data file and one log file are needed to create a database, the database can span multiple data files and multiple log files. Database files are of one of these three types:

· Primary data file (extension .MDF) – A database must have one .MDF file. The primary data file contains the database system tables and user tables.
· Secondary data file (extension .NDF) – A database can have up to 32,766 .NDF files. The secondary data files contain the user and system data not stored in the primary data file. Secondary data files are optional.

· Log file (extension .LDF) – A database can have up to 32,766 .LDF files. The log file contains the transaction log.

Note: - Size and Growth Options
· SIZE defines the initial size of the file. In SQL Enterprise Manager, you define size in megabytes. With Transact-SQL, you can specify kilobyte (KB), megabyte (MB), gigabyte (GB) or terabyte (TB), with MB being the default. The size cannot be smaller then the size of the model database (1MB, unless it has been changed).

· MAXSIZE defines the maximum size to which the file can grow. The unit rules are the same for the SIZE. MAXSIZE can be unlimited, meaning that the file can grow up to the disk size.

· FILEGROWTH defines the growth increment of the file. It cannot exceed MAXSIZE and can be specified by Transact-SQL in kilobyte (KB), megabyte (MB), gigabyte (GB), terabyte (TB), or percent (%), with MB being the default. In SQL Enterprise Manager, you can only define the file growth in MB or in present.

Note: - Collation
In versions of SQL Server up to SQL Server 7, the character set (or code page) was a server-wide parameter. On a server, every database used the same set of characters. With SQL Server 2000, the character set, sort order and Unicode collation have been grouped in what is now called a collation, which can be defined at the server, database or even column level. This means that a server can be installed to use the Latin1_General_CI_AS collation (that is code page 1252, case insensitive, accent sensitive) and a specific database can be created with the Modern_Spanish_CA_AS collation. While this feature has many advantages for administrators, such as the possibility to restore a database on a server that has been backed up on another server installed with a different collation, it has some drawbacks for the developers.

In the CREATE DATABASE statement or in the database properties dialog box in SQL Enterprise Manager, it is possible to define the collation of the database. Two types of collation names exist: Windows and SQL collation names. Both can be used with the COLLATE clause.

You’ll find exhaustive information on collation names in the SQL Server Books OnLine, in the Transact-SQL Reference book, at the COLLATE chapter. Open the Books OnLine by choosing Start (Programs (Microsoft SQL Server (Books OnLine. You’ll find the Transact-SQL Reference book in the list on the left-hand side of the window.

You can modify the collation used by a database with the ALTER DATABASE statement under strong restrictions:

· You are the only user of the database.

· No schema bound object is dependent on the database collation.

· No name duplicates are created by the altering process.

If the collation choice is a good idea, it should be used cautiously. In fact, a developer will now face two choices: changing collation or using Unicode. In an international environment, Unicode is always a better choice because you don’t have to handle character translation. Even if Unicode occupies twice the space (16 bits per character instead of 8 bits with a single-byte character set), you don’t have to ensure the proper translation of characters between different collations. Furthermore, collation precedence rules are not easy to manage. Reserve this collation feature only if you have to manage different serves using different locales.
ALTERING DATABASE
· [image: image6.png]Q

Developed by - Rafi Uddin Ahmed
Computer Teacher

Bhuiyan Computers Limited
Mymensingh Branch

Mobile ~ 01931482825, 0710599494
Office - 019-62937

E-mail — computer_xp_2007@gahoo.com

ALTER DATABASE Company

MODIFY FILE

(NAME = Company_Data,

 SIZE = 100MB)
· ALTER DATABASE Company

MODIFY FILE

(NAME = Company_Data,

 NEWNAME = Company_Primary,

 SIZE = 100MB,

 MAXSIZE = 200MB,

 FILEGROWTH = 50MB)
· ALTER DABASE Company

NAME = MyCompany

· DBCC SHRINKFILE (‘Company_Data’, EMPTYFILE)

· ALTER DATABASE Company

REMOVE File Company_Data
SHRINKING DATABASE
· ALTER DATABASE Company SET AUTO_SHRINK ON

· ALTER DATABASE Company SET AUTO_SHRINK OFF

· DBCC SHRINKDATABASE (Company, 20) [Manually]

VIEWING DATABASE
To View Databases:
SP_DATABASES

To View Database Structure:

SP_HELPDB Northwind
TABLE
Table:

A table is a collection of data about a specific topic, such as products or suppliers. Using a separate table for each topic means that you store that data only once. This results in a more efficient database and fewer data-entry errors.

CREATE TABLE
Syntax:
CREATE TABLE table_name

({column_name datatype} [NULL | NOT NULL] [CONSTRAINT] [, . . . n]

)

Statement:
CREATE TABLE Customers

(CustomerID nchar (5) NOT NULL,

CompanyName nvarchar (40) NOT NULL,

ContactName nvarchar (35) NULL,

ContactTitle nvarchar (25) NULL,

Address nvarchar (60) NULL,

City nvarchar (20) NULL,

Region nvarchar (20) NULL,

PostalCode nvarchar (10) NULL,

Country nvarchar (20) NULL,

Phone nvarchar (25) NULL,

Fax nvarchar (25) NULL

)

Note: -
Datatype:
Every column has a datatype, except the computed columns, as you’ll see in a couple of pages. Datatypes are part of entity integrity. Defining an integer column prevents any value except an integer to be stored. SQL Server 2000 has system and user-defined datatypes. They are described in the “Columns and Datatype” section.
Allow NULLs:
The value of a specific column may or may not be required. In the Customers table, the CustomerID column does not allow NUUL values. During an insert, this column must have a value if you want the insert to be successful.

During a column as NOT NULL means that a value is required. On the other hand, if you define a column as NULL, it means that a value is not required and as a consequence, if that column has no value, it will be NULL. In this case, NULL means unknown.

The NULL value plays a significant role in RDBMSs. A NULL value is different FROM a zero or an empty string. For example, the average of the four following values: one, two, NULL and three is two and is not 1.5. In fact, if you ask how many values there are, the system will answer there are only three. NULL does not count! So, the average is tow. This is pretty important for count and average function.

In Transact-SQL, if you do not specify the column nullability, you don’t indicate NULL or NOT NULL, its real nullability depends on the ANSI null default database option. To check your database default, run the following:
SELECT DATABASEPROPERTYEX (‘databasename’, ‘IsAnsiNullDefault’)

If the result is one, ANSI null default is on, if it is zero, the option is off.

To set it on, run the following:

ALTER DATABASE database_name

SET ANSI_NULL_DEFAULT ON

To set it off, run the following:

ALTER DATABASE database_name

SET ANSI_NULL_DEFAULT OFF

If this option is on, a column allows NULL value by default, unless otherwise defined. If it is off, it does not allow NULL and the ANSI SQL-92 to NULL, so the option governs the way SQL Server works, on a database basis.

Insert Data into Table

To insert data into Customer table follow following code:

Insert into Customer Values (1001, ‘MyFlash’, ‘Mr. Rahaman’, ‘Manager’, ‘27-Bagan Bari’, ‘Mymensingh’, ‘Dhaka’, 2200, ‘Bangladesh’, 01710254865, 123456789)
Insert into Customer Values (1002, ‘MyFlash’, ‘Mr. Pankoj’, ‘Manager’, ‘27-Bagan Bari’, ‘Mymensingh’, ‘Dhaka’, 2200, ‘Bangladesh’, 01710254867, 123456788)

Insert into Customer Values (1003, ‘CanadaSquare, ‘Mr. Shikdar’, ‘Manager’, ‘27-Bagan Bari’, ‘Mymensingh’, ‘Dhaka’, 2200, ‘Bangladesh’, 01710254865, 123456787)

Insert into Customer Values (1004, ‘A4 Tech’, ‘Mr. Bappy’, ‘Manager’, ‘27-Bagan Bari’, ‘Mymensingh’, ‘Dhaka’, 2200, ‘Bangladesh’, 01710254864, 123456786)

Insert into Customer Values (1005, ‘MyFlash’, ‘Mr. Robin’, ‘Manager’, ‘27-Bagan Bari’, ‘Mymensingh’, ‘Dhaka’, 2200, ‘Bangladesh’, 01710254868, 123456785)

To Insert Data into Selected Column follow following code:
Insert into Customer (CustomerID, CompanyName, ContactName, ContactTitle, Phone) Values (1006, ‘MyFlash’, ‘Mr. Kabir’, ‘Manager’, 01710125487)

Insert into Customer (CustomerID, CompanyName, ContactName, ContactTitle, Phone) Values (1007, ‘A4 Tech’, ‘Mr. Robin’, ‘Manager’, 01710125487)

Datatypes:
A table is made of one or many columns as well as named attributes or fields. In SQL Server 2000, every column must either have a defined datatype or be a computed column.

There are 27 datatypes provided by default by SQL Server; these are called system datatypes. Users can create their own datatypes, based on the system datatypes. Datatypes are used to define the column storage as well as the parameters of stored procedures and user-defined functions and variables in Transact-SQL script.
SQL Server System Datatypes
	Datatype
	Min and Max Values
	Size
	Description

	Bigint
	-263 to 263-1
	8 bytes
	Integer type new to SQL 2000, allowing storage of large integer values.

	Binary
	8,000 bytes max
	Exact size as defined by the length attribute
	Raw Binary data

	Bit
	
	1 byte
	Allow storage of Boolean values. Even if it occupies one byte, this byte can be shared among 8 bit columns. Storing FROM 1 to 8 bit columns consumes only one byte.

	Char
	8,000 characters max
	Exact size as defined by the length attribute
	Fixed-length character type.

	Datetime
	FROM January 1, 1753 to December 31, 9999
	8 bytes
	Date and Time value.

	Decimal
	-1038 to +1038+1
	FROM 5 to 17 bytes, depending on the precision
	Synonym to Numeric.

	Float
	-1.79 10308 to 1.79 10308
	8 bytes
	Floating point number.

	Image
	2GB max
	Variable
	Often called BLOB, Binary Large Object, this datatype allows the storage of binary data whose size may exceed 8000 bytes.

	Int
	-2,147,483,648 to 2,147,483,647
	4 bytes
	Integer.

	Money
	-263 to +263-1
	8 bytes
	Monetary data value. Precision goes down to the fourth decimal place (a ten thousandth).

	Nchar
	Up to 4,000 characters
	Exact size as defined by the length attribute
	Fixed-size Unicode character.

	Datatype
	Min and Max Values
	Size
	Description

	Ntext
	2GB max -230-1 characters
	Variable
	Unicode character type.

	Numeric
	-1038 to +1038+1
	FROM 5 to 17 bytes, depending on the precision
	Fixed precision and scale numeric value.

	Nvarchar
	4,000 characters max
	Variable
	Unicode variable character.

	Real
	-3.40 1038 to +3.40 1038
	4 bytes
	Floating point numeric value.

	Rowversion
	
	8 bytes
	Binary data unique within a database.

	Smalldatetime
	FROM January 1, 1900 to June 6, 2079
	4 bytes
	Date and time value with an accuracy to one minute.

	Smallmoney
	-214,748.3648 to 214,748.3647
	4 bytes
	Monetary data value. Precision goes down to the fourth decimal place (a ten-thousandth).

	Sql_variant
	
	Variable
	A universal datatype that stores any other datatype value, except text, ntext and timestamp.

	Table
	
	Variable
	Type used to store a result set. It is not possible define a table type column.

	Text
	2GB -230-1
	Variable
	Character type.

	Timestamp
	
	8 bytes
	Synonym of row version.

	Tinyint
	0 to 255
	1 byte
	Unsigned Integer.

	UniqueIdentifier
	
	16 bytes
	Globally Unique Identifier.

	Varbinary
	8,000 bytes max
	Variable
	Variable-length binary data.

	Varchar
	8,000 characters max
	Variable
	Variable-length character data.

VIEWING TABLE

To View Tables:
SP_TABLES

To View Table Structure:
SP_HELP Customer (Table_Name)
ALTERING TABLE
Syntax:
ALTER TABLE table_name

[ALTER COLUMN column_name new_datatype]

[ADD column_name datatype]
[DROP COLUMN column_name]

Statement:
To Add New Column into Customer:

ALTER TABLE Customer (Table_Name)

ADD HomePhone nvarchar(20)

To Change Column Data Type & Size:

ALTER TABLE Customer

ALTER COLUMN HomePhone varchar(25)

To Remove/Delete Column FROM Customer:

ALTER TABLE Customer (Table_Name)

DROP COLUMN HomePhone

To Delete Record FROM Customer:

Delete FROM Customer (Table_Name)

WHERE CustomerId=1005

To Delete Table (Customer):

DROP TABLE Customer (Table_Name)

DATA INTEGRITY

Data integrity defines rules for data accuracy and correctness. If, for example, a column is defined with an integer datatype, SQL Server prevents user FROM entering character data. On the other hand, a developer may design an Age column to prevent negative numbers. These simple rules, which could in certain cases become quite complicated, are data integrity rules.

Integrity Types
Four different types of data integrity are generally accepted in relational database:

Domain: Domain integrity defines the valid data for a specific column. It is enforced by restricting the datatypes, format or range of possible values.
Entity: Entity integrity defines each row as unique for each table. In other words, a row can exist only once in a specific table.

Referential: Referential integrity protects the relationship between tables during row inserts, updates and deletes. Referential integrity may prevent users FROM:

· Inserting records in a related table if there are no matching records in the parent table.

· Deleting records in a parent table if there is at least one matching record in the related table.

· Updating the relationship key in a parent table if there is at least one matching record in the related table.

Enterprise: Enterprise integrity defines business rules that describe the processes in your organization.

Integrity Implementation

In every RDBMS, the four previous integrity types can be enforced in two ways:

Declarative Integrity: With declarative integrity, integrity rules are part of the table schema. In SQL Server 2000, declarative integrity may be enforced with the following objects and features:

· Datatypes

· Nullability

· DEFAULT constraint
· CHECK constraint

· PRIMARY KEY constraint

· UNIQUE constraint

· UNIQUE indexes

· FOREIGN KEY constraint

Procedural Integrity: With procedural integrity, integrity rules are defined through external code objects, such as stored procedure or triggers. In SQL Server 2000, procedural integrity may be enforced with the following objects:
· Defaults
· Rules

· Trigger

· Stored Procedures

The integrity implementation type you use has an impact on row inserts, updates and deletes. Declarative integrity rules are always checked before the insert, update or delete. That means if one declarative integrity rule is violated, the operation is cancelled before the row has been inserted, updated or deleted. Procedural integrity rules are generally checked after the insert update or delete occurred. The only exception to this last rule concerns INSTEAD of triggers.if there are declarative and procedural integrity rules on a table, declarative rules checked first and may prevent procedure rules FROM being checked.
Implementing Integrity Types

	Integrity Type
	Declarative Implementation
	Procedural Implementation

	Domain
	Datatype, nullability

DEFAULT constraint

CHECK constraint
	Default
Rule

	Entity
	PRIMARY KEY constraint
UNIQUE constraint

UNIQUE index
	Stored Procedure
Trigger

	Referential
	FOREIGN KEY constraint
	Stored Procedure
Trigger

	Enterprise
	N/A
	Stored Procedure
Trigger

	Triggers vs. Constraints

· Always use constraints to enforce integrity whenever possible:

· Enforce domain integrity with CHECK constraints.
· Enforce entity integrity with PRIMARY KEY or UNIQUE constraints or a UNIQUE index.

· Enforce referential integrity with FOREIGN key constraints.

· Uses triggers only in the following cases:

· Domain integrity: The column values must be validated against one or many columns in another table.
· Referential integrity: The needed cascading rule is more complex than the one proposed with FOREIGN KEY constraints. For example, each time a customer is deleted his orders are moved to an archive table.

· Whenever the rule that must be applied cannot be done through constraints.

Remember, constraints are part of the table schema. They are checked after ALTER triggers and are more efficient than stored procedures and triggers. So, when you need to enforce data integrity, always think of constraints first.

Declarative integrity is enforced through the CREATE TABLE or ALTER TABLE, TABLE statements. Integrity rules can be defined at column or a table level. The following items show the different possible cases:
· Column-level constraint definition at table creation:
CREATE TABLE table_name

(column_name datatype [CONSTRAINT constraint_name]

columnconstrainttype [, . . .]

· Table-level constraint definition at table creation:
CREATE TABLE table_name

Column_name datatype [, . . .]

[CONSTRAINT constraint_name] tableconstrainttype

CONSTRAINT
Constraint:

A property assigned to a table column that prevents certain types of invalid data values from being placed in the column. For example, a UNION or PRIMARY KEY constraint prevents you from inserting a value that is a duplicate of an exiting value; a CHECK constraint prevents you from inserting a value that does not match a search condition; and NOT NULL prevents empty values.

PRIMARY KEY Constraint

Primary keys form the basic functionality for entity integrity checking. A primary key uniquely identifies each row and is formed by one or more columns in the table. In SQL Server 2000, the definition of a primary key automatically creates a unique index on the non-null columns that FROM the key. A table can have only one primary key.

A primary key can be created during table creation or table modification. You cannot modify an existing primary key in Transact-SQL. The following restrictions apply to the primary key column:
· Don’t accept Null Value.

· Don’t accept Duplicate Value.
Defining a Primary Key Constraint at Table Creation
· Table-level primary key constraint definition:
Syntax:
CREATE TABLE table_name

(column_name datatype [, . . .],

[CONSTRAINT constraint_name]

PRIMARY KEY [CLUSTERED | NONCLUSTERED]

 { (column [ASC | DESC] [, . . .n]) }

 [WITH FILLFACTOR = fillfactor]

 [ON { filegroup | DEFAULT }]

Statement – 1:

· CREATE TABLE Customers

(CustomerID nchar (5) NOT NULL,

CompanyName nvarchar (40) NOT NULL,

ContactName nvarchar (35) NULL,

ContactTitle nvarchar (25) NULL,

Address nvarchar (60) NULL,

City nvarchar (20) NULL,

Region nvarchar (20) NULL,

PostalCode nvarchar (10) NULL,

Country nvarchar (20) NULL,

Phone nvarchar (25) NULL,

Fax nvarchar (25) NULL,

Constraint con1 PRIMARY KEY (CustomerID)

)
Statement – 2:
· CREATE TABLE Customers

(CustomerID nchar (5) NOT NULL,

CompanyName nvarchar (40) NOT NULL,

ContactName nvarchar (35) NULL,

ContactTitle nvarchar (25) NULL,

Address nvarchar (60) NULL,

City nvarchar (20) NULL,

Region nvarchar (20) NULL,

PostalCode nvarchar (10) NULL,

Country nvarchar (20) NULL,

Phone nvarchar (25) NULL,

Fax nvarchar (25) NULL

Constraint con1 PRIMARY KEY (CustomerID, Phone)

)
Statement – 3:
· CREATE TABLE StudentID

(StuID nvarchar(25) NOT NULL,

StuName nvarchar(35),

StuAddress nvarchar(65),

StuCity nvarchar(25),

StuPhone nvarchar(20),

StuCourse nvarchar(40),

Constraint con1 PRIMARY KEY (StuID))

· Column-level primary key constraint definition:
Syntax:

CREATE TABLE table_name
(column_name datatype [CONSTRAINT constraint_name]

PRIMARY KEY [CLUSTERED | NONCLUSTERED]

 { (column [ASC | DESC] [, . . .n]) }

 [WITH FILLFACTOR = fillfactor]

 [ON { filegroup | DEFAULT }] [, . . .],
Statement – 1:

· CREATE TABLE Customers

(CustomerID nchar (5) NOT NULL PRIMARY KEY,

CompanyName nvarchar (40) NOT NULL,

ContactName nvarchar (35) NULL,

ContactTitle nvarchar (25) NULL,

Address nvarchar (60) NULL,

City nvarchar (20) NULL,

Region nvarchar (20) NULL,

PostalCode nvarchar (10) NULL,

Country nvarchar (20) NULL,

Phone nvarchar (25) NULL,

Fax nvarchar (25) NULL

)
Statement – 2:

· CREATE TABLE StudentID

(StuID nvarchar(25) NOT NULL PRIMARY KEY,

StuName nvarchar(35),

StuAddress nvarchar(65),

StuCity nvarchar(25),

StuPhone nvarchar(20),

StuCourse nvarchar(40))

UNIQUE Constraint

As their name implies, unique constraints enforce the uniqueness of rows. While a table can have only one primary key constraint, it can have many unique constraints. That is the first difference between primary key and unique constraints. The second difference concerns nullability. Unique constraints can be created on columns defined as NULL. Nevertheless these columns cannot contain more than one null value, because two null values are considered equal as far as unique constraints are concerned. As primary keys, unique constraints can be referenced by foreign key constraints to define relationships.
· Don’t accept duplicate value.
· Accept Null value at one time.
Defining a Unique Constraint at Table Creation
· Table-level unique constraint definition:
Syntax:
CREATE TABLE table_name

(column_name datatype [, . . .],

[CONSTRAINT constraint_name]

UNIQUE [CLUSTERED | NONCLUSTERED]

 { (column [ASC | DESC] [, . . .n]) }

 [WITH FILLFACTOR = fillfactor]

 [ON { filegroup | DEFAULT }]

Statement – 1:

· CREATE TABLE Customers

(CustomerID nchar (5) NOT NULL,

CompanyName nvarchar (40) NOT NULL,

ContactName nvarchar (35) NULL,

ContactTitle nvarchar (25) NULL,

Address nvarchar (60) NULL,

City nvarchar (20) NULL,

Region nvarchar (20) NULL,

PostalCode nvarchar (10) NULL,

Country nvarchar (20) NULL,

Phone nvarchar (25) NULL,

Fax nvarchar (25) NULL,

Constraint con1 PRIMARY KEY (CustomerID),

Constraint con2 UNIQUE (CompanyNamae)

)

Statement – 2:

· CREATE TABLE Customers

(CustomerID nchar (5) NOT NULL,

CompanyName nvarchar (40) NOT NULL,

ContactName nvarchar (35) NULL,

ContactTitle nvarchar (25) NULL,

Address nvarchar (60) NULL,

City nvarchar (20) NULL,

Region nvarchar (20) NULL,

PostalCode nvarchar (10) NULL,

Country nvarchar (20) NULL,

Phone nvarchar (25) NULL,

Fax nvarchar (25) NULL,

Constraint con1 PRIMARY KEY (CustomerID),

Constraint con2 UNIQUE (CompanyName, ContactName))
Statement – 3:

· CREATE TABLE StudentID

(StuID nvarchar(25) NOT NULL,

StuName nvarchar(35),

StuAddress nvarchar(65),

StuCity nvarchar(25),

StuPhone nvarchar(20),

StuCourse nvarchar(40),

Constraint con1 PRIMARY KEY (StuID),

Constraint con2 UNIQUE (StuName)

)
· Column-level unique constraint definition:
Syntax:

CREATE TABLE table_name

(column_name datatype [CONSTRAINT constraint_name]

UNIQUE [CLUSTERED | NONCLUSTERED]

 { (column [ASC | DESC] [, . . .n]) }

 [WITH FILLFACTOR = fillfactor]

 [ON { filegroup | DEFAULT }] [, . . .],

Statement – 1:

· CREATE TABLE Customers

(CustomerID nchar (5) NOT NULL PRIMARY KEY,

CompanyName nvarchar (40) NOT NULL UNIQUE,

ContactName nvarchar (35) NULL UNIQUE,

ContactTitle nvarchar (25) NULL,

Address nvarchar (60) NULL,

City nvarchar (20) NULL,

Region nvarchar (20) NULL,

PostalCode nvarchar (10) NULL,

Country nvarchar (20) NULL,

Phone nvarchar (25) NULL,

Fax nvarchar (25) NULL

)
Statement – 2:

· CREATE TABLE StudentID

(StuID nvarchar(25) NOT NULL PRIMARY KEY,

StuName nvarchar(35) NOT NULL UNIQUE,

StuAddress nvarchar(65),

StuCity nvarchar(25),

StuPhone nvarchar(20),

StuCourse nvarchar(40) NOT NULL UNIQUE

)

CHECK

Datatypes and default values enforce domain integrity. Check rules limit the possible values that can be entered into a column and in doing so, contribute to the domain integrity. Check constraints and rules are the tow possible implementations of this feature. Generally, they limit the values allowed by defining:
· A range or ranges of acceptable values.

· A list of values

· A pattern to follow, such a phone number mask or a social security number

Check constraints are a declarative integrity feature and rules are a procedural feature. Both can be bound to columns or to user-defined datatypes. As mentioned for defaults, use check constraints instead of rules except for when defining user-defined datatypes. Let’s take a close look now at check constraints.
CHECK Constraint

Check constraints are part of the table definition. They can be defined at table creation, at table modification and dropped at any time. They can be disabled or enabled when needed. A column can have more than one check constraint. They are validated in their creation order during inserts and updates.

Check constraint:

· Must evaluate to a Boolean expression, such as a WHERE expression

· Can reference other columns of the same table

Defining a Check Constraint at Table Creation

Check constraints are part of the CREATE TABLE statement and can be defined at column or table level. To reference other columns, the check constraint has to be defined at table level.
· Table-level check constraint definition:
Syntax:
CREATE TABLE table_name

(column_name datatype [, . . .],

[CONSTRAINT constraint_name]

CHECK [NOT FOR REPLICATION] (logical_expression)

Statement:

· CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL,

CustomerID nchar(5) NOT NULL,

EmployeeID int NOT NULL,

OrderDate datetime NULL,

RequiredDate datetime NULL,

ShippedDate datetime NULL,

ShipVia int NULL,

Freight money NULL,

ShipName nvarchar(40),

ShipAddress nvarchar(60),

ShipCity nvarchar(40),

ShipRegion nvarchar(20),

ShipCountry nvarchar(25),

Constraint con1 Primary key (CustomerID),

Constraint con2 CHECK (CustomerID LIKE '[A-Z] [A-Z] [A-Z] [A-Z] [A-Z]'),

Constraint con3 CHECK (OrderDate BETWEEN '01/01/70' AND GETDATE()),

Constraint con4 CHECK (ShipVia IN (1, 2, 3, 4)),

Constraint con5 CHECK (Freight>=0),

Constraint con6 CHECK (ShipRegion IN ('Dhaka', 'Chittagong', 'Rajshahi', 'Khulna', 'Sylhet', 'Borishal')),

Constraint con7 CHECK (ShipCountry IN (‘Bangladesh’),

Constraint con8 CHECK (RequiredDate>OrderDate)

)

Statement – 2:

· Create Table StudentID

(StuID nvarchar(25) NOT NULL,

StuName nvarchar(35),

StuAddress nvarchar(65),

StuCity nvarchar(25),

StuPhone nvarchar(20),

StuCourse nvarchar(40),

Constraint con1 PRIMARY KEY (StuID),

Constraint con2 UNIQUE (StuName),

Constraint con3 CHECK (StuID LIKE '[A-Z] [A-Z] [A-Z] [A-Z] [A-Z]'),

Constraint con4 CHECK (StuCity IN ('Mymensingh', 'Nattrokana', 'Jamalpur', 'Kishorgong', 'Sharpur', 'Tangail')),

Constraint con5 CHECK (StuCourse IN ('4 Month', '6 Month', 'First Track', 'Diploma')))
· Column-level check constraint definition:
Syntax:

CREATE TABLE table_name

(column_name datatype [CONSTRAINT constraint_name]

CHECK [NOT FOR REPLICATION] (logical_expression)

[, . . .],
Statement – 1:

· CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL,

CustomerID nchar(5) NOT NULL PRIMARY KEY CHECK (CustomerID LIKE '[A-Z] [A-Z] [A-Z] [A-Z] [A-Z]'),

EmployeeID int NOT NULL,

OrderDate datetime NULL CHECK (OrderDate BETWEEN '01/01/70' AND GETDATE()),

RequiredDate datetime NULL,

ShippedDate datetime NULL,

ShipVia int NULL CHECK (ShipVia IN (1, 2, 3, 4)),

Freight money NULL CHECK (Freight>=0),

ShipName nvarchar(40),

ShipAddress nvarchar(60),

ShipCity nvarchar(40),

ShipRegion nvarchar(20) CHECK (ShipRegion IN ('Dhaka', 'Chittagong', 'Rajshahi', 'Khulna', 'Sylhet', 'Borishal')),

ShipCountry nvarchar(25) CHECK (ShipCountry IN ('Bangladesh')),

CHECK (RequiredDate>OrderDate)

)
Statement – 2:
· Create Table StudentID

(StuID nvarchar(25) NOT NULL PRIMARY KEY (StuID) CHECK (StuID LIKE '[A-Z] [A-Z] [A-Z] [A-Z] [A-Z]'),

StuName nvarchar(35) NOT NULL UNIQUE (StuName),

StuAddress nvarchar(65),

StuCity nvarchar(25) CHECK (StuCity IN ('Mymensingh', 'Nattrokana', 'Jamalpur', 'Kishorgong', 'Sharpur', 'Tangail')),
StuPhone nvarchar(20),

StuCourse nvarchar(40) NOT NULL CHECK (StuCourse IN ('4 Month', '6 Month', 'First Track', 'Diploma')))
Default Values

Amongst column characteristics, we find null ability and default values. These two features define the value inserted in a column when it is not specified in an INSERT statement. Three cases can occur when the column value is not given in the INSERT statement:
· When the column is defined as accepting NULL values and has no default value, the column value is NULL.
· When the column is defined as not accepting NULL values and has no default value, an error occurs.

· When the column has a default value, whether it has been defined to accept or not accept NULL values, the column value is the default value.
Default Constraint

The default constraint can be created at the time of table creation, added after table creation or dropped. Each column can have one default constraint.

Note: - TIMESTAMP, IDENTITY and ROWGUIDCOL columns cannot have a default constraint since their value definition is already automatic.

· Create Table with Default Constraint:
Syntax:

CREATE TABLE table_name

(column_name datatype [NULL | NOT NULL]

[CONSTRAINT constraint_name] DEFAULT expression
[, . . .])
Statement:

· CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL,

CustomerID nchar(5) NOT NULL PRIMARY KEY CHECK (CustomerID LIKE '[A-Z] [A-Z] [A-Z] [A-Z] [A-Z]'),

EmployeeID int NOT NULL,

OrderDate datetime NULL DEFAULT GETDATE() CHECK (OrderDate BETWEEN '01/01/70' AND GETDATE()),

RequiredDate datetime NULL,

ShippedDate datetime NULL,

ShipVia int NULL CHECK (ShipVia IN (1, 2, 3, 4)),

Freight money NULL DEFAULT DETDATE() CHECK (Freight>=0),

ShipName nvarchar(40),

ShipAddress nvarchar(60),

ShipCity nvarchar(40),

ShipRegion nvarchar(20) CHECK (ShipRegion IN ('Dhaka', 'Chittagong', 'Rajshahi', 'Khulna', 'Sylhet', 'Borishal')),

ShipCountry nvarchar(25) CHECK (ShipCountry IN ('Bangladesh')),

CHECK (RequiredDate>OrderDate)

)
FOREIGN KEY Constraint and RELATIONSHIPS:

In SQL Server 2000, relationships are declaratively defined with foreign key constraints. As with all other constraints, a foreign key can be created at table creation or added afterwards.

A foreign key constraint can reference columns defined as the primary key or unique constraints only and only in the same database. A foreign key behaves like a check constraint since it limits its values to that of the primary key or unique column values to which it is linked.
Relationships:

Relationships mean relation into two tables or more. At least two tables are needed for relationships. One is parent table which is control table. And another is child table which is related by parent table.
Defining a Foreign Key Constraint at Table Creation

· Table-level Foreign Key Constraint definition:

Syntax:
CREATE TABLE table_name

(column_name datatype [, . . .],

[CONSTRAINT constraint_name]

FOREIGN KEY [(column [, . . .n])]

REFERENCES ref_table [(ref_column [,])]

[ON DELETE { CASCADE | ON ACTION }]

[ON UPDATE { CASCADE | ON ACTION }]

[NOT FOR REPLICATION]

Statement:

· CREATE TABLE StudentClasses

(StudentClassID nvarchar(25) NOT NULL,

ClassID nvarchar(25) NOT NULL,

StuID nvarchar(25) NOT NULL,

GradeID nvarchar(25) NOT NULL,

GPA char(5) NOT NULL,

Constraint con1 PRIMARY KEY (StudentClassID),

Constraint con1 FOREIGN KEY (StuID) REFERENCES Student(StuID))

Relational Table of Computer Management System Database
Statement:

Student Table:

CREATE TABLE Student
(StuID nvarchar(25) NOT NULL,

StuName nvarchar(35),

StuAddress nvarchar(65),

StuCity nvarchar(25),

StuPhone nvarchar(20),

StuCourse nvarchar(40),

Constraint con1 PRIMARY KEY (StuID),

Constraint con2 UNIQUE (StuName),

Constraint con3 CHECK (StuID LIKE '[M, C] [C, L] [V, N] [4, 6] [M] [S] [0-9] [0-9] [0-9]'),
Constraint con4 CHECK (StuCity IN ('Mymensingh', 'Nattrokana', 'Jamalpur', 'Kishorgong', 'Sharpur', 'Tangail')),

Constraint con5 CHECK (StuCourse IN ('4 Month', '6 Month', 'First Track', 'Diploma')))

Department Table:

CREATE TABLE Department

(DepID nvarchar(25) NOT NULL,

DepName nvarchar(35),

DepNumber numaric(15),

Constraint con6 PRIMARY KEY (DepID))

Grade Table:

CREATE TABLE Grade

(GradeID nvarchar(25) NOT NULL,

GradeName char(5) NOT NULL,

Constraint con7 Primary KEY (GradeID),

Constraint con8 CHECK (GradeName IN ('A+', 'A', 'B+', 'B', 'C+', 'C', 'F')))
Teacher Table:

CREATE TABLE Teacher
(TeaID nvarchar(25) NOT NULL,

TeaName nvarchar(35),

TeaPhone nvarchar(20),

Constraint con9 PRIMARY KEY (TeaID))

Classes Table:

CREATE TABLE Classes

(ClassID nvarchar(25) NOT NULL,

Subject nvarchar(25) NOT NULL,

DepID nvarchar(25) NOT NULL,

TeaID nvarchar(25) NOT NULL,

Unit int,

DateAndTime datetime,

Notes nvarchar(255),

Constraint con10 PRIMARY KEY (ClassID),

Constraint con11 CHECK (DateAndTime BETWEEN '01/01/94' AND GETDATE()),

Constraint con12 foreign key(DepID) references Department(DepID),

Constraint con13 foreign key(TeaID) references Teacher(TeaID))

StudentClasses Table:
CREATE TABLE StudentClasses

(StudentClassID nvarchar(25) NOT NULL,

ClassID nvarchar(25) NOT NULL,

StuID nvarchar(25) NOT NULL,

GradeID nvarchar(25) NOT NULL,

GPA char(5),

Constraint con14 PRIMARY KEY (StudentClassID),

Constraint con15 FOREIGN KEY (ClassID) references Classes(ClassID),

Constraint con16 FOREIGN KEY (StuID) references Student(StuID),

Constraint con17 FOREIGN KEY (GradeID) references Grade(GradeID))
[image: image1.png]B rle Wrdon e |-ls/x|
HE & & - f@%QE 5

NN 5 -7~

3 [SrusereCloseic & Grade

(Accessing Data
· Create Table Employee1

(EmpID nvarchar(10) NOT NULL PRIMARY KEY,

EmpName nvarchar(25) NOT NULL UNIQUE,

EmpTitle nvarchar(20) DEFAULT 'Officer',

EmpAge nvarchar(5) CHECK (EmpAge IN (25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35)),

EmpCity nvarchar(20) CHECK (EmpCity IN ('Mymensingh', 'Nattrokana', 'Jamalpur', 'Kishorgong', 'Sharpur', 'Tangail')),

EmpSalary money))
Then insert values into Employee Table –

Insert into Employee1 values ('E101', 'Kajol', 'Manager', 28, 'Mymensingh', 25000)

Insert into Employee1 values ('E102', 'Tuhin', 'Manager', 29, 'Mymensingh', 25000)

SELECT Statement with Clause & Keyword
SELECT, FROM, WHERE
Statement:
SELECT * FROM Employee1
Statement:
SELECT EmpName, EmpTitle, EmpCity

FROM Employee1

Statement:
SELECT EmpID, EmpName, EmpSalary

FROM Employee1

Statement:
SELECT EmpName, EmpTitle, EmpCity

FROM Employee1

WHERE EmpID = 105

Statement:
SELECT EmpName, EmpTitle, EmpCity

FROM Employee1

WHERE EmpCity = ‘Mymensingh’

Comparison Operator

(=, >, <, >=, <=, !<, != or <> , BETWEEN ….. AND, NOT BETWEEN ….. AND, IN (…..), LIKE, DISTINCT, TOP, ORDER BY (ASC, DESC), GROUP BY, HAVING, ANY / SOME, ALL)
=, >, <, >=, <=, !<, != or <>
Statement:
=
SELECT EmpName, EmpTitle, EmpCity

FROM Employee1

WHERE Salary = 25000
>

SELECT EmpName, EmpTitle, EmpCity

FROM Employee1

WHERE Salary > 25000
<

SELECT EmpName, EmpTitle, EmpCity

FROM Employee1

WHERE Salary < 25000
>=

SELECT EmpName, EmpTitle, EmpCity

FROM Employee1

WHERE Salary >= 25000
<=

SELECT EmpName, EmpTitle, EmpCity

FROM Employee1

WHERE Salary <= 25000

!=

SELECT EmpName, EmpTitle, EmpCity

FROM Employee1

WHERE Salary != 25000
<>

SELECT EmpName, EmpTitle, EmpCity

FROM Employee1

WHERE Salary <> 25000

BETWEEN ….. AND
Statement:
SELECT EmpName, EmpTitle, EmpCity
FROM Employee1
WHERE Salary Between 25000 and 35000

Order By EmpID

NOT BETWEEN ….. AND

Statement:
SELECT EmpName, EmpTitle, EmpCity
FROM Employee1

WHERE Salary NOT BETWEEN 25000 AND 35000

Order By EmpID
IN (…..)
Statement:
SELECT EmpName, EmpTitle, EmpSalary, EmpCity

FROM Employee1

WHERE Empsalary IN (10000, 15000, 20000, 25000, 30000, 35000)

LIKE (‘A%’, ‘%A’, ‘%A%’, ‘_A%’, ‘A%B’, ‘_____’, ‘___A_’)

Statement:
SELECT EmpName, EmpTitle, EmpSalary, EmpCity

FROM Employee1

WHERE EmpName LIKE ‘___A_’

Statement:
SELECT EmpName, EmpTitle, EmpSalary, EmpCity

FROM Employee1

WHERE EmpName LIKE ‘M%’

DISTINCT
Statement:
SELECT DISTINCT EmpCity

FROM Employee1
TOP

Statement:
SELECT TOP 5*

FROM Employee1

ORDER BY (ASC, DESC)

Statement:
SELECT EmpName, EmpTitle, EmpSalary, EmpCity

FROM Employee1

WHERE EmpName LIKE ‘M%’

ORDER BY EmpName
ASC

Statement:
SELECT EmpName, EmpTitle, EmpSalary, EmpCity

FROM Employee1

WHERE EmpName LIKE ‘M%’

ORDER BY EmpName ASC

DESC

Statement:
SELECT EmpName, EmpTitle, EmpSalary, EmpCity

FROM Employee1

WHERE EmpName LIKE ‘M%’

ORDER BY EmpName DESC

GROUP BY

Statement:
SELECT EmpCity, COUNT(*) AS EmployeeCity

FROM Employee1

GROUP BY Empcity

Statement:
SELECT EmpCity, COUNT(*) AS EmployeeCity
FROM Employee1

WHERE EmpCity IN (‘Rupgong’, ‘Mymensingh’)

GROUP BY EmpCity

Statement:
SELECT EmpName, COUNT(*) AS EmployeeName

FROM Employee1

GROUP BY EmpName

HAVING
Statement:

SELECT EmpCity, COUNT(*) AS EmployeeCity

FROM Employee1

GROUP BY EmpCity

HAVING COUNT(*) > 5

Statement:

SELECT EmpCity, COUNT(*) AS EmployeeCity

FROM Employee1

GROUP BY EmpCity

HAVING COUNT(*) > 5

AND COUNT(*) < 10

Statement:

USE Northwind

SELECT

C.Country,

C.CustomerID,

COUNT (O.OrderID) ‘Total Orders’,

SUM (OD.UnitPrice * OD.Quantity) ‘Total Sales’
FROM Customers C, Orders O, [Order Details] OD

WHERE C.CustomerID = O.CustomerID

AND O.OrderID = OD.OrderID

GROUP BY C.Country, C.CustomerID

HAVING SUM (OD.UnitPrice* OD.Quantity) > 10000

AND COUNT (O.OrderID) < 20

GO
Logical Operator
(AND, OR, NOT)
AND

Statement:

SELECT EmpName, EmpTitle, EmpSalary

FROM Employee1

WHERE EmpTitle = ‘Manager’ AND EmpCity = ‘Mymensingh’
Statement:

SELECT EmpName, EmpTitle, EmpSalary

FROM Employee1

WHERE EmpTitle = ‘Manager’ AND EmpCity = ‘Mymensingh’ AND EmpSalary >= 25000

OR
Statement:

SELECT EmpName, EmpTitle, EmpSalary

FROM Employee1

WHERE EmpCity = ‘Mymensingh’ OR EmpCity = ‘Nettrokona’
Statement:

SELECT EmpName, EmpTitle, EmpSalary

FROM Employee1

WHERE EmpCity = ‘Mymensingh’ OR EmpCity = ‘Nettrokona’ OR EmpCity = ‘Jamalpur’

NOT

Statement:

SELECT EmpName, EmpTitle, EmpSalary

FROM Employee1

WHERE NOT (EmpCity IS NULL)

Statement:

SELECT EmpName, EmpTitle, EmpSalary

FROM Employee1

WHERE NOT (EmpSalary BETWEEN 25000 AND 35000)

Aggregate Operators

(AVG, MIN, MAX, COUNT, SUM)
AVG

Statement:
SELECT AVG (EmpSalary) AS AverageSalary

FROM Employee1
MIN

Statement:
SELECT MIN (EmpSalary) AS MiniSalary

FROM Employee1
MAX

Statement:
SELECT MAX (EmpSalary) AS MaxSalary

FROM Employee1
COUNT

Statement:
SELECT MAX (EmpSalary) AS MaxSalary

FROM Employee1
Statement:
SELECT EmpCity, COUNT(*) AS EmployeeCity

FROM Employee1

GROUP BY Empcity
SUM

Statement:
SELECT SUM (EmpSalary) AS TotalSalary

FROM Employee

Statement:
SELECT StorID, Payterms,

SUM(Qty) AS Total_Quantity
FROM Sales

GROUP BY StorID, Payterms
Statement:
SELECT StorID, Payterms,
SUM(Qty) AS Total_Quantity

FROM Sales

GROUP BY StorID, Payterms

ORDER BY StorID, Payterms
CUBE
Syntax:
SELECT column_name, column_name

SUM (column_name)

FROM table_name

GROUP BY column_name, column_name WITH CUBE

Statement:

SELECT StorID, Payterms,

SUM(Qty) AS Total_Quantity

FROM Sales

GROUP BY StorID, Payterms WITH CUBE

Statement:

USE Northwind

SELECT
C.CustomerID, C.City, C.Country,

COUNT (O.OrderID) ‘Total Orders’,
SUM (OD.UnitPrice * OD.Quantity) ‘Total Sales’

FROM Customers C, Orders O, [Order Details] OD

WHERE C.CustomerID = O.CustomerID

AND O.OrderID = OD.OrderID

GROUP BY C.Country, C.City, C.CustomerID

WITH CUBE

HAVING SUM (OD.UnitPrice * OD.Quantity) > 10000
ORDER BY C.Country

GO

ROLLUP
Syntax:

SELECT column_name, column_name

SUM (column_name)

FROM table_name

GROUP BY column_name, column_name WITH ROLLUP
Statement:

SELECT StorID, Payterms,

SUM(Qty) AS Total_Quantity

FROM Sales

GROUP BY StorID, Payterms WITH ROLLUP

Statement:

USE Northwind

SELECT

C.CustomerID, C.City, C.Country,

COUNT (O.OrderID) ‘Total Orders’,

SUM (OD.UnitPrice * OD.Quantity) ‘Total Sales’

FROM Customers C, Orders O, [Order Details] OD

WHERE C.CustomerID = O.CustomerID

AND O.OrderID = OD.OrderID

GROUP BY C.Country, C.City, C.CustomerID

WITH CUBE

HAVING SUM (OD.UnitPrice * OD.Quantity) > 10000

ORDER BY C.Country

GO
MIX & MIN
Statement:
SELECT MAX (EmpSalary) AS MaxSalary, MIN (EmpSalary) AS MiniSalary

FROM Employee1

MIN, MAX, AVG & SUM

Statement:
SELECT MIN (EmpSalary) AS MiniSalary, MAX (EmpSalary) AS MaxSalary, AVG (EmpSalary) AS AverageSalary, SUM (EmpSalary) AS TotalSalary

FROM Employee1

JOINING:
(UNION, INTERSECT, MINUS, INNER JOIN, OUTER JOIN (LEFT OUTER JOIN & RIGHT OUTER JOIN, FULL OUTER JOIN)

UNION
SELECT column_name, column_name, …..

FROM table_name(1)

UNION

SELECT column_name, column_name, …..

FROM table_name(1)

SELECT column_name, column_name, …..

FROM table_name(1)

UNION

SELECT column_name, column_name, …..

FROM table_name(2)

Join two select statements by UNION:

USE Northwind

SELECT CompanyName, ContactName

FROM Suppliers WHERE Country = ‘USA’
UNION

SELECT CompanyName, ‘N/A’ FROM Shippers
GO

Join two select statements by UNION ALL with sorting:
USE Northwind
SELECT City, Country

FROM Customers WHERE Country = ‘UK’

UNION ALL

SELECT City, Country
FROM Suppliers WHERE Country = ‘UK’

ORDER BY City

GO

INTERSECT
SELECT column_name, column_name, …..

FROM table_name(1)

INTERSECT

SELECT column_name, column_name, …..

FROM table_name(1)

SELECT column_name, column_name, …..

FROM table_name(1)

INTERSECT

SELECT column_name, column_name, …..

FROM table_name(2)

MINUS

SELECT column_name, column_name, …..

FROM table_name(1)

MINUS

SELECT column_name, column_name, …..

FROM table_name(1)

SELECT column_name, column_name, …..

FROM table_name(1)

MINUS

SELECT column_name, column_name, …..

FROM table_name(2)

INNER JOIN

A single table SELECT statement has limited use in relational databases. The power of a relational database comes from its ability to gather information from multiple tables and link the information together. The most common method of linking information in different tables is the inner join. An inner join works by comparing columns in two tables and returning the request information if the values of the columns match.

Since it is easier to explain this with an example, let’s suppose that we have a new request from our salespeople. They want to see all of the orders for each customer along with the customer ID, company name and the date the order was placed.
Syntax:

SELECT table_name.column_name, column_name

FROM table_name(1) INNER JOIN table_name(2)

ON

table_name(1).column_name = table_name(2).column_name

Syntax with aliases:
SELECT 1stcha.column_name(tab-1), 1stcha.column_naem(tab-1), 1stcha.column_name(tab-2), 1stcha.column_name

FROM table_name AS 1stcha(tab-1)

INNER JOIN

table_name AS 1stcha(tab-2)

ON

1stcha.column_name(tab-1) = 1stcha.column_name(tab-2)

ORDER BY 1stcha.column_name

Statement:

USE FlightManagement

SELECT B.Branch_Code, B.Add1, R.Tno, R.Pass_Name

FROM Branch AS B

INNER JOIN

Reservation AS R

ON

B.Branch_Code = R.Branch_Code

ORDER BY B.Branch_Code
GO
Statement:
USE Northwind

SELECT * FROM

Suppliers S INNER JOIN Categories C

ON

S.SupplierID = C.CategoryID

GO
Statement:
USE Northwind

SELECT

C.CustomerID ‘Customer Code’,

C.CompanyName AS ‘Company’,

O.OrderID,

O.OrderDate,
C.Country

FROM Customers C INNER JOIN Orders O

ON

C.CustomerID = O.CustomerID
WHERE C.Country = ‘Finland’ AND C.City = ‘Helsinki’
ORDER BY C.Country DESC, C.ContactName
GO
OUTER JOIN (LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN)

Inner joins require that the qualifying conditions be met for each row to be included in the result set. Outer joins allow all rows from one or more tables to be included in the result set. There are three types of outer joins that can be written in T-SQL: left outer joins, right outer joins and full outer joins.

LEFT and RIGHT OUTER JOINS

The left and right outer joins are very similar and differ only in which table includes all its rows. The left outer join includes all the rows from the table on the left side of the join syntax, while the right outer join is just the opposite.

The right outer join works the same way except the table on the right side of the join expression will return all rows. Other than this, two joins work in the exact same manner.
LEFT OUTER JOIN

Syntax:

SELECT table_name.column_name, column_name

FROM table_name(tab-1) LEFT OUTER JOIN table_name(tab-2)

ON

table_name (tab-1).column_name = table_name(tab-2).column_name

Statement:

USE Northwind

SELECT

C.CustomerID 'Customer Code',

C.CompanyName AS 'Company',

O.OrderID,

O.OrderDate 'Order Date',

C.Country

FROM Customers C LEFT OUTER JOIN Orders O

ON

C.CustomerID = O.CustomerID

WHERE o.OrderID IS NULL

ORDER BY C.Country DESC, C.ContaCtName

GO
RIGHT OUTER JOIN
Syntax:

SELECT table_name.column_name, column_name

FROM table_name(tab-1) RIGHT OUTER JOIN table_name(tab-2)

ON

table_name (tab-1).column_name = table_name(tab-2).column_name

FULL OUTER JOIN

Syntax:

SELECT table_name.column_name, column_name

FROM table_name(tab-1) FULL OUTER JOIN table_name(tab-2)

ON

table_name (tab-1).column_name = table_name(tab-2).column_name

Statement:

USE Northwind

SELECT

C.CustomerID 'Customer Code',

C.City AS 'CustomerCity',

C.Country,

E.FirstName,

E.LastName

FROM Employees E FULL OUTER JOIN Customers C

ON

E.City = C.City

GO
CROSS JOIN

Syntax:

SELECT *
FROM table(1) CROSS JOIN table(2)

Statement:

USE Northwind

SELECT *

FROM Suppliers CROSS JOIN Categories

GO
 or

USE Northwind

SELECT *
FROM Suppliers, Categories

GO
Statement of Joining
Join two tables by JOIN with sorting:

USE Northwind

SELECT Region.RegionID, TerritoryDescription, RegionDescription

FROM Territories JOIN Region
ON

Territories.RegionID = Region.RegionID

ORDER BY Region.RegionID

GO

Display all record of one table by JOIN:

USE Northwind

SELECT Territories.*

FROM Territories JOIN Region

ON

Territories.RegionID = Region.RegionID

GO

Display all record of two tables by JOIN:

USE Northewind

SELECT *

FROM Territories JOIN Region

ON

Territories.RegionID = Region.RegionID

GO

Join two tables by JOIN with aliases:
USE Northwind

SELECT P.ProductName, C.CategoryName

FROM Products P JOIN Categories C
ON
P.CategoryID = C.CategoryID

GO

Join tables by NESTED JOIN with aliases:
USE Northwind

SELECT FirstName, LastName, TerritoryDescription, RegionDescription
FROM Employees E JOIN EmployeeTerritories ET
ON

E.EmployeeID = ET.EmployeeID JOIN Territories T
ON
ET.TerritoryID = T.TerritoryID JOIN Region R
ON

T.RegionID = R.RegionID

GO

Join two tables by JOIN with aliases & WHERE:
USE Northwind

SELECT ProductID, UnitPrice, CompanyName
FROM Products P JOIN Suppliers S

ON

P.SupplierID = S.SupplierID
WHERE CompanyName = ‘Exotic Liquids’

GO
Update value of a selected column by JOIN with aliases:
UPDATE Products

SET UnitPrice = UnitPrice + 5

FROM Products P JOIN Suppliers S
ON

P.SupplierID = S.SupplierID

WHERE CompanyName = ‘Exotic Liquids’

Join two tables by INNER JOIN:

USE Northwind

SELECT * FROM Products

INNER JOIN Categories

ON

Products.CategoryID = Categories.CategoryID

GO

Join tables by INNER JOIN:

USE Northwind

SELECT ProductID, ProductName, CompanyName

FROM Products INNER JOIN Suppliers

ON
Products.SupplierID = Suppliers.SupplierID

GO

Join tables by LEFT OUTER JOIN with WHERE:
USE Northwind

SELECT *
FROM Territories LEFT OUTER JOIN Region

ON
Territories.RegionID = Region.RegionID

WHERE Region.RegionID = 1

GO

Join tables by LEFT OUTER JOIN with AND:
USE Northwind

SELECT *

FROM Territories LEFT OUTER JOIN Region

ON

Territories.RegionID = Region.RegionID
AND Region.RegionID =1

GO

Join two tables by RIGHT OUTER JOIN:

USE Northwind

SELECT TerritoryID, TerritoryDescription, R.regionID, RegionDescription
FROM Territories T RIGHT OUTER JOIN Region R

ON

T.RegionID = R.RegionID

GO
Join two tables by RIGHT OUTER JOIN:

SELECT TerritoryID, TerritoryDescription, R.RegionID, RegionDescription

FROM Territories T RIGHT OUTER JOIN Region R

ON
T.RegionID = R.RegionID

GO
Join two tables by RIGHT OUTER JOIN with WHERE:
USE Northwind

SELECT TerritoryID, TerritoryDescription, R.RegionID, RegionDescription
FROM Territories T RIGHT OUTER JOIN Region R
ON
T.RegionID = R.RegionID

WHERE TerritoryID IS NULL

GO

Table of Flight Management Database

CREATE TABLE Branch

(Branch_Code char(5),

Add1 varchar(25),

Add2 varchar(25),

City varchar(15),

Telephone_No int);

Insert into Branch Values ('SAN', '9, Avenue', 'Ellis Bridge', 'San Francisco', 017102548754);

Insert into Branch Values ('BOS', '1st Floor', 'Estate Tower', 'Boston', 017102548756);

Insert into Branch Values ('LAX', 'Hech Lane', 'North Apartment', 'Loss Angeles', 017102563254);

Insert into Branch Values ('NYK', 'Bakery Lane', 'Mount Tower', 'New York', 017102321231);

Insert into Branch Values ('FLO', 'New Street', 'Dollis Lane', 'Florida', 017102548741);

Insert into Branch Values ('HOU', '408, Ont Apt', 'Stevens Road', 'Houston', 017102325654);

Insert into Branch Values ('AMS', '390, Howls Lane', 'North Avenue', 'Amsterdam', 017102359548);

Insert into Branch Values ('LOU', '40, Saint Tower', 'Dell Road', 'Saint Louis', 017102325632);

Insert into Branch Values ('WAS', '23, Hawl Tower', Turkey Road', 'Washington', 017101458745);

Insert into Branch Values ('PHL', '23, Hou Sau', 'Houston Road', 'Philadelphia', 017102596326);

Insert into Branch Values ('LON', '34, Avenue Street', 'Rust Road', 'London', 017102323256);

CREATE TABLE Airbus

(AirbusNo char(5),

FirstCap int,

BusCap int,

EcoCap int);

Insert into Airbus Values ('AB01', 100, 120, 130);

Insert into Airbus Values ('AB02', 80, 100, 120);

Insert into Airbus Values ('AB03', 100, 120, 130);

Insert into Airbus Values ('AB04', 80, 100, 120);

Insert into Airbus Values ('AB05', 80, 100, 120);

Insert into Airbus Values ('AB06', 100, 120, 130);

Insert into Airbus Values ('AB07', 80, 100, 120);

CREATE TABLE Service

(SS_Code char(5),

SS_Desc varchar(15),

SS_Fare Money);

Insert into Service Values ('CC', 'Child Care', 40);

Insert into Service Values ('NU', 'Nurse', 50);

Insert into Service Values ('WC', Wheel Chair', 30);

CREATE TABLE Fare

Route_Code char(15),

Route_Desc varchar(35),

Origin varchar(25),

Destination varchar(25),

First_Fare money,

Bus_Fare money,

Eco_Fare money);

Insert into Fare Values ('SAN - LOU', 'San Francisco - Saint Louis', 'San Francisco', 'Saint Louis', 400, 350, 300);

Insert into Fare Values ('FLO - WAS', 'Florida - Washington', 'Florida', 'Washington', 300, 250, 200);

Insert into Fare Values ('BOS - PHL', 'Boston - Philadelphia', 'Boston', 'Philadelphia', 250, 200, 150);

Insert into Fare Values ('NYK - AMS', 'New York - Amsterdam', 'New York', 'Amsterdam', 650, 550, 450);

Insert into Fare Values ('NYK - LON', 'New York - London', 'New York', 'London', 600, 500, 400)

Insert into Fare Values ('LAX - HOU', 'Los Angeles - Houston', 'Los Angeles', 'Houston', 250, 200, 150);

Insert into Fare Values ('LOU - SAN', 'Saint Louis - San Francisco', 'Saint Louis', 'San Francisco', 400, 350, 300);

Insert into Fare Values ('WAS - FLO', 'Washington - Florida', 'Washington', 'Florida', 300, 250, 200);

Insert into Fare Values ('PHL - BOS', 'Philadelphia - Boston', 'Philadelphia', 'Boston', 250, 200, 150);

Insert into Fare Values ('LON - NYK', 'London - New York', 'London', 'New York', 600, 500, 400);

Insert into Fare Values ('AMS - NYK', 'Amsterdam - New York', 'Amsterdam', 'New York', 650, 550, 450);

Insert into Fare Values ('HOU - LAX', 'Houston - Los Angeles', 'Houston', 'Los Angeles', 250, 200, 150);

CREATE TABLE FlightSchedule

(Flight_No char(5),

Air_Bus_No char(5),

Route_Code char(10),

Depart_Time char(5),

Journey_Hrs char(5),

Flight_Day1 int,

Flight_Day2 int);

Insert into FlightSchedule Values ('WF13', 'AB01', 'WAS - FLO', 3.30, 9:00, 1, 3);

Insert into FlightSchedule Values ('FW24', 'AB01', 'FLO - WAS', 3.30, 9:00, 2, 4);

Insert into FlightSchedule Values ('SL36', 'AB02', 'SAN - LOU', 5, 13:30, 3, 6);

Insert into FlightSchedule Values ('LS47', 'AB02', 'LOU - SAN', 5, 13:30, 4, 7);

Insert into FlightSchedule Values ('NL35', 'AB03', 'NYK - LON', 11, 13:00, 3, 5);

Insert into FlightSchedule Values ('LN46', 'AB03', 'LON - NYK', 11, 13:00, 4, 6);

Insert into FlightSchedule Values ('BP14', 'AB04', 'BOS - PHL', 2, 11:15, 1, 4);

Insert into FlightSchedule Values ('PB25', 'AB04', 'PHL - BOS', 2, 11:15, 2, 5);

Insert into FlightSchedule Values ('NA36', 'AB05', 'NYK - AMS', 12, 18:00, 3, 6);

Insert into FlightSchedule Values ('AN47', 'AB05', 'AMS - NYK', 12, 18:00, 4, 7);

Insert into FlightSchedule Values ('LH13', 'AB06', 'LAX - HOU', 2.30, 14:00, 1, 3);

Insert into FlightSchedule Values ('HL24', 'AB06', 'HOU - LAX', 2.30, 14:00, 2, 4);

CREATE TABLE Flight

(Flight_No char(5),

Flight_Date datetime,

First_Seat_BK int,

Bus_Seat_BK int,

Eco_Seat_BK int);

Insert into Flight Values ('WF13', '01-Sep-05', 1, 1, 0);

Insert into Flight Values ('NA47', '01-Sep-05', 0, 0, 2);

Insert into Flight Values ('AN47', '02-Sep-05', 1, 1, 0);

Insert into Flight Values ('PB25', '02-Sep-05', 3, 0, 0);

Insert into Flight Values ('NL35', '08-Sep-05', 3, 0, 0);

Insert into Flight Values ('NL35', '10-Sep-05', 0, 0, 0);

CREATE TABLE Cancellation

(TNO int,

Branch_Code char(5),

Flight_No char(5),

Flight_Date datetime,

Class char(2),

Reserve_Date datetime,

Pass_Name varchar(15),

Cancle_Date datetime,

Total_Fare money);

Insert into Cancellation Values (1001, 'AMS', 'AN47', '02-Sep-05', 'B', '02-Aug-05', 'Nickel', '14-Aug-05', 550);

Insert into Cancellation Values (1002, 'AMS', 'AN47', '02-Sep-05', 'B', '02-Aug-05', 'Jeffy', '14-Aug-05', 550);

Insert into Cancellation Values (1003, 'AMS', 'AN47', '02-Sep-05', 'B', '02-Aug-05', 'Nelson', '14-Aug-05', 550);

Insert into Cancellation Values (1004, 'NYK', 'NA36', '02-Sep-05', 'F', '02-Aug-05', 'Jerry', '14-Aug-05', 650);

Insert into Cancellation Values (1005, 'NYK', 'NA36', '02-Sep-05', 'F', '02-Aug-05', 'Joseph', '14-Aug-05', 650);

CREATE TABLE Reservation

(TNO int,

Pass_Name varchar(15),

Pass_Add1 varchar(35),

Pass_Add2 varchar(15),

Passport_No varchar(10),

Credit_Card_No varchar(20),

SS_Code char(5),

Flight_No char(5),

Flight_Date datetime,

Class char(2),

Reserve_Date datetime,

Branch_Code char(5));

Insert into Reservation Values (1004, 'Jerry', '56, Burlingame Tower', 'New York', 'L463227', 1334, 'NA', 'NA36', '08-Sep-05', 'F', '15-Aug-05', 'NYK');

Insert into Reservation Values (10011, 'Mildred', 'Heck Street', 'Amsterdam', 'D789732', 4332, 'WC', 'AN47', '02-Sep-05', 'B', 13-Aug-05', 'AMS');

Insert into Reservation Values (10012, 'Allen', '420 Red Hunt', 'New York', 'L876543', 2332, 'NU', 'NA36', '02-Sep-05', 'B', '13-Aug-05', 'NYK');
SUB QUERIES

A subquery is a used embedded inside another query. There are many possibilities, so we will cover the three main places that these can appear and that you should be aware of for the exam. You can use a subquery inside the SELECT list in place of a column, in the FROM clause in place of a table and in the WHERE clause in place of a column or literal qualifier.
Syntax:

SELECT * FROM table_name

WHERE column_name IN (SELECT column_name FROM table_name WHERE column_name = value)

SELECT column_name, column_name, …..

WHERE column_name = ANY (SELECT column_name FROM table_name WHERE column_name = vlue OR column_name = value)

Statement of Subqueries in the SELECT list:
USE Northwind
SELECT

(SELECT ContactName

FROM Suppliers WHERE ContactTitle = ‘Sales Agent’) ‘Agent’,
O.OrderID FROM Orders O

GO
Statement of Subqueries in the FROM Clause:
USE Northwind

SELECT a.*, b.*
FROM Customers a, (SELECT Ordered, OrderDate, CustomerID FROM Orders) b
WHERE a.CustomerID = b.CustomerID

GO
Statement of Subqueries in the WHERE Clause:

USE Northwind

SELECT O.OrderID, O.OrderDate
FROM Orders O

WHERE O.CustomerID IN (SELECT CustomerID

FROM Customers C WHERE Country = ‘USA’)
GO

Statement of Sub Queries:
USE FlightManagement

SELECT *

FROM Airbus
WHERE Airbus_No IN (SELECT Airbus_No FROM FlightSchedule
WHERE Route_Code = ‘HOU-LAX’)
GO

USE FlightManagement

SELECT Tno, Flight_Date, Class, Pass_Name, Flight_No, Branch_Code
FROM Reservation

WHERE Flight_No = ANY (SELECT Flight_No FROM FlightSchedule
WHERE Flight_Day1 = 3 OR Flight_Day2 = 3)
GO

Statement of Sub Queries (EXISTS & NOT EXISTS):

USE FlightManagement
SELECT *

FROM FlightSchedule

WHERE EXISTS (SELECT * FROM Fare WHERE Origin = ‘Philadelphia’ AND Destination = ‘Boston’ AND Fare.Route_Code = FlightSchedule.Rute_Code)

GO

USE FlightManagement

SELECT *

FROM NOT EXISTS (SELECT * FROM Reservation WHERE Branch.Branch_Code = Reservation.Branch_Code)
GO

Statement of Sub Queries (Nested):

USE FlightManagement

SELECT Pass_Name FROM Reservation

WHERE Flight_No IN ((SELECT Flight_No FROM FlightSchedule WHERE Route_Code IN (SELECT Route_Code FROM FARE WHERE Origin = ‘New York’))
GO

Statement of Sub Queries (Correlated):

USE FlightManagement

SELECT * FROM Service

WHERE SS_Code IN (SELECT SS_Code FROM Reservation WHERE Service.SS_Code = Reservation.SS_Code)

GO

VIEWS
Definition and Advantages of Views:

A view is essentially a named SELECT statement. It acts as a table, but does not contain any data. It relies on the data stored in the underlying table. Like a table, a view can be queried and can be inserted, deleted and modified through a view.
Views enable you too horizontally or vertically partition information from one or more tables in a database. In other words, with a view you can let users see only the author’s last name and first name fields (vertical partition) and only authors with a last name that begins with the letter M (horizontal partition).
	Au_LName
	Au_FName
	City
	State
	Zip

	Caloney
	Sarah
	Freson
	CA
	90225

	Deitrich
	Johanna
	Plano
	TX
	76503

	Dominic
	Anthony
	Bend
	OR
	97922

	MacFeather
	Stearns
	Bowie
	UT
	82331

	Ferrous
	Eric
	Towns
	ME
	2566

	McDonald
	Stephanie
	London
	MO
	55823

	Oreland
	Lars
	Reno
	NV
	89509

	Spinola
	Michael
	Moreno
	NM
	73220

	Au_LName
	Au_FName

	MacFeather
	Stearns

	McDonald
	Stephanie

The code used to create this view might look something like this:
CREATE VIEW dbo.vwAuthors
AS

SELECT Au_LName, Au_FNamae FROM Authors

WHERE Au_LName Like ‘M%’

View can also be created to show derived information. For example, you can create a view that shows the author’s last name, first name and title and then a calculated or derived field showing the number of books sold multiplied by the royalty fee per book.

Views also have the following advantages:
· You control what users can see. This capability is useful for both security and ease of use. Users don’t have to look at extra information that they don’t require.
· You can simplify the user interface by creating views of often-used queries. With this capability, users can run views with simple statements rather than supply parameters every time the query is run.
· Views allow you to set up security. Users can control only what you let them see. This might be a subset of rows or columns, statistical information or a subset of information from another view.
· Because a view is a database object, you can assign user permissions on the view. This approach is much more efficient than placing the same permissions on individual columns in a table.
· Views can now have indexes created on them, making them an incredibly efficient method of gaining access to frequently requested data.
· Data can be exported from a view by using the BCP utility.

Views are very powerful and useful objects in your database design. You can give users access to certain columns and rows within your table but a view much easier to maintain than user permissions on individual columns and is therefore the preferred method of partitioning information. This is a performance consideration as well. When you place permissions on columns in a table, every time that table is referenced for any reason, the permissions must be checked on each referenced column.
Views can be used in the following situation:
· Mask data complexity: A view can join many tables or perform a calculation, which makes it easy to query and access data. A normalized database is sometimes difficult to use due to the number of tables to query. Views can mask this normalization. Views can also be used to combine result sets coming from different servers. The users do not know data is coming from different servers, but the feature helps increase performance by scaling out the application. For example, a server can contain data from the U.S., another one from Europe and a third one from Asia. A view can combine the data from these three servers.
· Provide a security mechanism: views can be designed with a WHERE clause or with specific join and column selections to restrict the data available to users. For example, a sales table may contain the region. Different views can be created to ensure each salesperson has access only to his or her sales region. It is better to manage security at a view level (or at a stored procedure level), than at a column level.
· Performance enhancer: views are stored SELECT statements that can be dozens of lines long. Using a view avoids running the query from the client application. Furthermore, the view is already parsed, so running a view is generally faster than running query it contains directly. Last, but not least, it isolates the application from the data, providing the possibility of changing the query if needed, without modifying the application.
CREATE VIEW

Syntax:
CREATE VIEW [<db_name>.][<owner>.] view_name [(column[,…n])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA} [,…n]]
AS

select_statement

[WITH CHECK OPTION]

Statement:
USE Northwind

CREATE VIEW ViewCustomer

AS

SELECT CompanyName, ContactName, ContactTitle, Phone

FROM Customers

GO
Statement:

USE Northwind

CREATE VIEW ViewProducts

AS

SELECT ProductName, UnitPrice, CompanyName

FROM Suppliers INNER JOIN Products

ON

Suppliers.SupplierID = Products.ProductID

GO
Statement:

USE Northwind

CREATE VIEW ViewProducts

AS

SELECT TOP 100 PERCENT ProductName, UnitPrice, CompanyName

FROM Suppliers INNER JOIN Products

ON

Suppliers.SupplierID = Products.ProductID

ORDER BY ProductName

GO
Statement:

USE Northwind

CREATE VIEW ViewDetails

AS

SELECT [Order Details].OrderID, Orders.ShipName,

Products.ProductName, [Order Details].UnitPrice,

Suppliers.CompanyName, Suppliers.ContactName,

Employees.FirstName

FROM [Order Details] INNER JOIN Products
ON

[Order Details].ProductID = Products.ProductID INNER JOIN Orders
ON
[Order Details].OrderID = Orders.OrderID INNER JOIN Employees
ON

Orders.EmployeeID = Employees.EmployeeID INNER JOIN

Suppliers ON Products.SupplierID = Suppliers.SupplierID

GO
The ENCRYPTION Option:

If you develop an application that you are going to sell and install at your customers’ sites, you may want to protect your intellectual property. All objects containing code, such as views can be encrypted. By using the SP_HELPTEXT or by querying the Syscomments system table, you could discover the text of the code used to create the ENCRYPTION option. The following example creates the view and encrypts it:

Statement:

USE Northwind

CREATE VIEW ViewProducts

WITH ENCRYPTION

AS

SELECT TOP 100 PERCENT ProductName, UnitPrice, CompanyName

FROM Suppliers INNER JOIN Products

ON

Suppliers.SupplierID = Products.ProductID

ORDER BY ProductName

GO
The SCHEMABINDING Option:

The SCHEMABINDING option is useful to protect your view definition against any structure modifications of the underlying table. Once a view is created with the SCHEMABINDING option, the underlying tables cannot be dropped and cannot be altered if it affects the view definition. For example, a column could be added to the table, but a column used in the view cannot be dropped. Consider the following view:

Statement:

USE Northwind

CREATE VIEW ViewProducts

WITH SCHEMABINDING
AS

SELECT ProductName, UnitPrice, CompanyName

FROM Suppliers INNER JOIN Products

ON

Suppliers.SupplierID = Products.ProductID

GO
The VIEW_METADATA Option:

The VIEW_METADATA Option is useful when you use a view through DBLIB (DB-Library), OLE DB or ODBC. In the normal case, each time a client application queries a view or a table through any of these interfaces. It needs first to retrieve metadata about this view or table. Metadata is information about the view’s properties, such as a column name or type. To be able to manipulate or display the retrieved information correctly, the client application needs to know as precisely as possible the structure of the object it will be using.

When you query a view created with default options, SQL Server queries the tables constituting the view to retrieve the metadata from the base tables. With the VIEW_METADATA options, SQL Server does not query the table metadata, but instead sends the view metadata back to the client. The main benefit for the client is the ability to create an updateable client-side cursor, based on the view. Generally, client-side cursors based on views are not updateable. The VIEW_METADATA option opens new possibilities for client development.
The With CHECK OPTION Option:

This last option is probably the most useful. To understand it, let’s look at a quick example. Suppose you have a Customers table containing a State column. You create a view that selects only customers from California with:
CREATE VIEW CustomersCAView
AS

SELECT * FROM Customers WHERE state = ‘CA’

Using this view, if you need to update one of the California customers, you can run the following statement:
UPDATE CustomersCAView
SET state = ‘OR’ WHERE CustomerID = ‘LETSS’

The update occurs without any problem and when you query the view again, the LETSS customer is not present anymore. This seems normal, since you modified the state for a customer. This can become really annoying, however, for users that perform data access through this view.

By default, you can update any record through a view and make it disappear, because the WHERE condition applied to the view that does not select the data anymore. You can insert data in the through the view that does not comply with the view WHERE condition. In other words, the view restricts data access but not data updates and inserts! To avoid this situation, you can use the WITH CHECK OPTION option:
CREATE VIEW CustomersCAView
AS

SELECT * FROM Customers WHERE state = ‘CA’

WITH CHECK OPTION

This option guarantees that the data updated or inserted through the view complies with the WHERE condition.

If you run the previous updated, and if the view has been created with the WITH CHECK OPTION option, you obtain error 550, the attempted insert or update failed because the target view either specifies WITH CHECK OPTION or spans a view that specifies WITH CHECK OPTION and one or more rows resulting from the operation did not qualify under the CHECK OPTION constraint.
This option guarantees users cannot eject rows out of the view. It should be used whenever you intend to update or insert data through views.
VIEWING VIEW

To Show Viewes:
SP_TABLES

To Show Viewe Structure:
SP_HELPTEXT ViewProducts (View_Name)
ALTERING VIEW

Syntax:
ALTER VIEW [owner.]view_name [(column_name[, column_name…])]
[WITH {ENCRYPTION | SEHEMABINDING | VIEW_METADATA}]

AS

select_statement

[WITH CHECK OPTION]

Statement:
ALTER VIEW ViewProducts

AS

SELECT TOP 100 PERCENT ProductName, UnitPrice, CompanyName, ContactName

FROM Suppliers INNER JOIN Products

ON

Suppliers.SupplierID = Products.ProductID

ORDER BY ProductName

REMOVING VIEW

Syntax:

DROP VIEW [owner.]view_name [, [owner.]view_name…]
Statement:

DROP VIEW ViewProducts

STORED PROCEDURES
Definitions and Advantages of Stored Procedures:

A stored procedure is a batch of Transact-SQL statements stored under a name and executed as a single unit of work. In other language, like C, Pascal or Basic a procedure is usually a set of statements that aim to accomplish one specific is usually a set of statements that aim to accomplish one specific goal and can be called from the same program, as a single statement.

In SQL Server, the definition of a procedure is basically the same. A stored procedure can be called from another stored procedure from a client application or from a Transact-SQL batch to perform a predefined action. They carry the following inherent advantages:
Fast Execution: Stored Procedures are precompiled and optimized once, and then their execution plan is stored directly in memory, bypassing the parsing, optimization and compilation phase, that an ad-hoc query goes through.
Network Load Reduction: The client application calls only the stored procedure that is executed on the server. If the client was executing the same operation on its own, it would require many instructions be sent to the server and the results analyzed on the client.
Security Mechanism: As with views, a user can be granted permission to execute a stored procedure that updates or retrieves data in a table, while not having to know how to update or retrieves data in a table, while not having to know how to update or retrieve it directly. Stored procedures can shield data access and updates efficiently and easily.
CREATE STORED PROCEDURE

Syntax:

CREATE PROC[EDURE] procedure_name
[{@parameter data_type} [=default] [OUTPUT]] [,…n]

[WITH

{RECOMLILE | ENCRYPTION | RECOMPILE , ENCRYPTION}]
[FOR REPLICATION]

AS sql_statement [,…n]

Statement:

USE Northwind

CREATE PROCEDURE ProcProducts

AS

SELECT ProductName, UnitPrice, CompanyName

FROM Suppliers INNER JOIN Products

ON

Suppliers.SupplierID = Products.ProductID

GO

Statement:
USE FlightManagement

CREATE PROCEDURE Proc1

AS

SELECT * FROM Flight
RETURN

GO
Statement:

USE FlightManagment

CREATE PROCEDURE Proc2
AS

SELECT Route_Code, Origin, Destination

FROM Fare

WHERE First_Fare>=300

RETURN
GO

Statement:

USE FlightManagement
CREATE PROCEDURE Proc3

AS

SELECT FS.FlightNo, FS.AirbusNo, FS.Depart_Time, F.Origin, F.Destination, F.First_Fare
FROM Fare AS F INNER JOIN FlightSchedule AS FS
ON

F.Route_Code = FS.Route_Code

ORDER BY FS.AirbusNo
SELECT COUNT(*) AS ‘Total No of Services Available’

INSERT INTO Service (SS_Code, SS_Desc, SS_Fare)
VALUES (‘NA’, ‘Not Available’, 0)

SELECT * FROM Service

IF (SELECT COUNT (Tno) From Reservation

WHERE FlightNo = ‘PB25’) > 0

BEGIN

PRINT ‘Following are the details of Flight No PB25’

SELECT * FROM Reservation WHERE FlightNo = ‘PB25’

END

ELSE

PRINT ‘There are no reservations done for the Flight No PB25’

RETURN

GO
Create Stored Procedure with PARAMETERS:
Statement:

USE Northwind

CREATE PROCEDURE ListCustomer @CustomerID nchar(5)

AS

SELECT * FROM Customers

where CustomerID=@CustomerID

ORDER BY CustomerID
GO

Statement:

USE Northwind

CREATE PROCEDURE ListCustomer @CustomerID nchar(5)

AS

SELECT * FROM Customers

where CustomerID>=@CustomerID

ORDER BY CustomerID
GO

Statement:

USE Northwind

CREATE PROCEDURE ListCustomer @CustomerID nchar(5)

AS

SELECT * FROM Customers

where CustomerID<=@CustomerID

ORDER BY CustomerID
GO
Statement:

USE Northwind

CREATE PROCEDURE CustOrder @CustomerID nchar(5)

AS

SELECT ProductName, Totla = SUM(Quantity)

FROM Products P, [Order Details] OD, Orders O, Customers C

WHERE C.CustomerID = @CustomerID

AND C.CustomerID = O.CustomerID
AND O.OrderID = OD.OrderID

AND OD.ProductID = P.ProductID

GROUP BY ProductName

GO

Statement:

USE Northwind
CREATE PROCEDURE CustOrderDetail @OrderID int
AS

SELECT ProductName,

UnitPrice = ROUND(OD.UnitPrice, 2),
Quantity,

Discount = CONVERT(int, Discount * 100),

ExtendedPrice = ROUND(CONVERT(money, Quantity * (1-Discount) * OD.UnitPrice), 2)
FROM Products P, [Order Details] OD

WHERE OD.ProductID = P.ProductID and OD.OrderID = @OrderID

GO

Statement:

CREATE PROCEDURE ListCustomerOrder @CustomerID nchar(5)

AS

IF EXISTS (SELECT * FROM Orders WHERE CustomerID = @CustomerID)

BEGIN
SELECT * FROM Orders WHERE CustomerID = @CustomerID

RETURN 1

END
ELSE
RETURN 0

Create Stored Procedure with RECOMPILE:
Statement:

USE Northwind

CREATE PROCEDURE ProcProducts

WITH RECOMPILE

AS

SELECT ProductName, UnitPrice, CompanyName

FROM Suppliers INNER JOIN Products

ON

Suppliers.SupplierID = Products.ProductID

GO

Statement:

USE Northwind

CREATE PROCEDURE ListCustomer @CustomerID nchar(5)
WITH RECOMPILE
AS

SELECT * FROM Customers

where CustomerID=@CustomerID

ORDER BY CustomerID
GO

To Recompile Stored Procedure after Created:
SP_RECOMPILE ProcProducts
Create Stored Procedure with ENCRYPTION:
Statement:

USE Northwind

CREATE PROCEDURE ProcProducts

WITH ENCRYPTION

AS

SELECT ProductName, UnitPrice, CompanyName, ContactName

FROM Suppliers INNER JOIN Products

ON

Suppliers.SupplierID = Products.ProductID

GO
VIEWING STORED PROCEDURE

To View Stored Procedures:
SP_STORED_PROCEDURES
To View Procedure Structure:

SP_HELPTEXT ViewProducts (Procedure_name)

ALTERING STORED PROCEDURE

Syntax:

ALTER PROC[EDURE] procedure_name

[{@parameter data_type} [=default] [OUTPUT]] [,…n]

[WITH

{RECOMLILE | ENCRYPTION | RECOMPILE , ENCRYPTION}]

[FOR REPLICATION]

AS sql_statement [,…n]

Statement:

USE Northwind

ALTER PROCEDURE ProcProducts

AS

SELECT ProductName, UnitPrice, CompanyName, ContactName

FROM Suppliers INNER JOIN Products

ON

Suppliers.SupplierID = Products.ProductID

GO

Statement:

USE Northwind

ALTER PROCEDURE ListCustomer @CustomerID nchar(5)

AS

SELECT * FROM Customers

where CustomerID<>@CustomerID

ORDER BY CustomerID
GO

EXECUTE STORED PROCEDURE

Syntax:

Exec procedure_name

Statement:

Exec ListCustomer

REMOVE STORED PROCEDURE
Syntax:

DROP PROCEDURE procedure_name
Statement:

DROP PROCEDURE ListCustomer
USER-DEFINED FUNCTIONS
Definition and Advantages of User-defined Functions:

A user-defined function (UDF) is a named set of Transact-SQL statements used like system functions or views. There are two main types of UDFs:
Scalar: A scalar UDF returns a single value and can be used wherever an expression or variable can be used, for example, in a select list of a SELECT statement, or in the SET clause of an UPDATE statement. A scalar function can be seen as the result of some mathematical or string function.
Table-valued: Table UDFs return a result set and can be used wherever a table or a view can be used (under some limitations). Table-valued UDFs can be referenced in a FROM clause of a SELECT statement, for example. UDFs can be more complex than views and can have parameters.

All the functions are created with the CREATE FUNCTION statement, modified with the ALTER FUNCTION and dropped with the DROP FUNCTION statement. The different functions share some syntax elements and have their own particularities. The options they share are ENCRYPTION and SCHEMABINDING. These options are equivalent to the same view options. Refer to the ‘View’ section for mere information on these options.

As we have just seen, there are two main types of UDFs: Scalar and Table-valued. The table-valued UDFs are split into two subtypes: Inline and Multistatement table-valued.
CREATE USER-DEFINED FUNCTION
Scalar UDF:

Syntax:

CREATE FUNCTION [owner_name] function_name

([{@parameter_name [AS] data_type [=default]} [,…n]])
RETURNS scalar_return_data_type

[WITH {ENCRYPTION | SCHEMABINDING} [[,]…n]]
[AS]

BEGIN

Function_body

RETURN scalar_expression

END

Statement:

CREATE FUNCTION TotalAmount
(@UnitPrice money, @quantity smallint, @Discount real)

RETURNS money

AS

BEGIN

RETURN (@UnitPrice*@Quantity)*(1-@Discount)
END

To Call Function: TotalAmount
SELECT

ProductID, Total=dbo.TotalAmount (UnitPrice, Quantity, Discount)
FROM [Order Details] WHERE OrderID = 10250

Inline Table-valued UDF:

An inline table-valued user-defined function can be seen as a view with parameters. They execute one SELECT statement, as in a view but can include parameters like a stored procedure.
Syntax:
CREATE FUNCTION [owner_name] function_name
([{@parameter_name [AS] data_type [=default]} [,…n]])
RETURNS TABLE

[WITH {ENCRYPTION | SCHEMABINDING} [[,] …n]]
[AS]

RETURN [(] select_statement [)]

Statement:

USE Pubs

CREATE FUNCTION SalesByBookShop (@stor_id char(4))

RETURNS TABLE

AS
RETURN (
SELECT Stores.Stor_Name, Title.Title, SUM(Sales.qty) AS TotalQty

FROM Stores
INNER JOIN Sales ON Stores.Stor_ID = Sales.Stor_ID

INNER JOIN Titles ON Sales.Title_ID = Title_ID = Titles.Title_ID
WHERE Stores.Stor_ID = @Stor_ID

GROUP BY Stores.Stor_Name, Titles.Title

GO

To Call Function: SalesByBookShop
SELECT * FROM SalesByBookShop(7066)
Statement:

USE Pubs

CREATE FUNCTION dbo.fnRoyalTiesByAuthor()

RETURN TABLE

AS

RETURN (

SELECT a.au_fname, a.au_lname, t.title,

‘RoyToDate’ = (t.ytd_sales * t.price * t.royalty / 100)

FROM Authors a, titles t, titleauthor ta

WHERE a.au_id = ta.au_id AND t.title_id = ta.title_id)

GO
Multistatement Table-valued UDF:

Multistatement table-valued UDFs are the most complex of UDF. This type of function builds the result set from one or many SELECT statements.
Syntax:

CREATE FUNCTION [owner_name] function_name

([{@parameter_name [AS] data_type [=default]} [,…n]])

RETURNS @return_variable

TABLE ({column_definition | table_constraint} [,…n])
[WITH {ENCRYPTION | SCHEMABINDING} [[,] …n]]

[AS]

BEGIN

function_body

RETURN

END

Statement:

USE Northwind

CREATE FUNCTION Contacts (@suppliers bit = 0)
RETURNS @Contacts Table

(ContactName nvarchar(30),

Phone nvarchar(24),
ContactType nvarchar(15))

AS

BEGIN

INSERT @Contacts

SELECT ContactName, Phone, ‘Customer’ FROM Customers

INSERT @Contacts

SELECT FirstName + ‘’ + LastName, HomePhone, ‘Employee’ FROM Employees

IF @Suppliers = 1

INSERT @Contacts

SELECT ContactName, Phone, ‘Supplier’ FROM Suppliers

RETURN

END
GO

To Call Function: Contacts
SELECT * FROM Contacts(1)

ORDER BY ContactName
Statement:

CREATE FUNCTION dbo.fnRoyaltySplitByAuthor()

RETURNS @RoyByAuthor TABLE
(au_lname varchar(40) NOT NULL,

au_fname varchar(20) NULL,

title varchar(80) NOT NULL,

RoyToDate float)

AS

BEGIN

--Create a temp table to store my author count per title

DECLARE @temptbl TABLE (
title_id varchar(6) NOT NULL,

num_authors tinyint NOT NULL)
INSERT @temptbl

SELECT title_id, COUNT(au_id) FROM titleauthor

GROUP BY title_id

--Load my return table with a join between my temp table and all

--other appropriate tables

INSERT @RoyByAuthor

SELECT a.au_fname, a.au_lname, t.title,

‘RoyToDate’ = ((t.ytd_sales * t.price * t.royalty / 100) / tt.num_authors)
FROM authors a, titles t, titleauthor ta, @temptbl tt

WHERE a.au_id = ta.au_id AND t.title_id = ta.title_id

AND t.title_id = tt.title_id

RETURN

END

To Call Function: dbo.fnRoyaltySplitByAuthor
SETECT * FROM dbo.fnRoyaltySplitByAuthor
TRIGGERS

Definition and Advantages if Triggers

A trigger is a special form of stored procedure, bound to a table or to a view, and fired automatically by a particular statement. Constraints, which are used to enforce different types of data integrity. Triggers are generally used to enforce referential integrity and business rules. While triggers are similar to CHECK constraints, they have one major difference: triggers are reactive while constraints are proactive.

This means a constraint is fired before the effect of the statement. Takes place, while a trigger is fired after or instead of the firing statement.

Two types of triggers exist:

· AFTER triggers that run after the statements that fired them

· INSTEAD OF triggers that run instead of statements that fired them
Triggers can be used to go beyond declarative referential integrity and to implement more complex rules than those possibly defined with CHECK constraints. Triggers are found in many situations like maintaining denormalized data, complex cascading updates, inserts or deletes, comparing data defore and after updates, etc.

A trigger is a part of the transaction stared by the statement that fired it. So, since a transaction is atomic, if the trigger fails the firing statement fails. If this statement is part of a large transaction, then the entire transaction fails,
CREATE TRIGGER
Syntax:

CREATE TRIGGER trigger_name

ON

table_name

[WITH ENCRYPTION]

{

{ {FOR | AFTER} { [INSERT] [,] [UPDATE] [[,] [DELETE] }

[WITH APPEND]

[NOT FOR REPLICATION]

AS

[{IF UPDATE(column)

[{AND | OR} UPDATE(column)] […n] }

]

sql_statement […n]

} }
Statement: Insert Trigger
CREATE TRIGGER Age_Check ON Employee

FOR INSERT

AS

IF (SELECT age FROM Inserted)<21

BEGIN

PRINT “Age cannot be less than 21”

ROLLBACK TRANSACTION

END

Statement: Delete Trigger

CREATE TRIGGER Delete_Check ON Reservation

FOR DELETE

AS

IF (SELECT COUNT(*) FROM Deleted)>5

BEGIN

PRINT ‘You cannot delete more than 5 records’

ROLLBACK TRANSACTION

END

Statement: Update Trigger (Column Level)
CREATE TRIGGER Update_Check ON Service

FOR UPDATE

AS
IF UPDATA (SS_Fare)

BEGIN

PRINT ‘You cannot update the Fare field’

ROLLBACK TRANSACTION

END

Statement: Update Trigger (Table Level)

CREATE TRIGGER Update_Check1 ON Service

FOR UPDATE

AS
IF (SELECT SS_Fare FROM Inserted)<50

BEGIN

PRINT ‘Service Fare cannot be less than 50’

ROLLBACK TRANSACTION

END

Statement: Insert Trigger

CREATE TRIGGER Insert_Trigger1 ON Airbus

FOR INSERT

AS

IF (SELECT SUM (First_Cap+Eco_Cap+Bus_Cap) FROM Inserted NOT IN (300, 350)

BEGIN

PRINT ‘The total seating capacity of the airbus should be 300 or 350’
ROLLBACK TRANSACTION

END

Statement: Delete Trigger (Cascade Delete)

CREATE TRIGGER Cas_Del_Tri1 ON FlightSchedule

FOR DELETE

AS

Delete Airbus FROM Airbus, Deleted WHERE Airbus.AirbusNo=Deleted.AirbusNo

Statement: Delete Trigger (Cascade Delete)

CREATE TRIGGER Cas_Del_Tri2 ON Airbus

FOR DELETE

AS
SELECT * FROM Airbus

SELECT * FROM FlightSchedule
Statement: Insert, Update Trigger

USE pubs

GO

CREATE TRIGGER trAddAuthor ON Authors

FOR INSERT, UPDATE

AS

RAISERROR (“ ‘%d rows have been modified’ ”, 0, 1, @@rowcount)
RETURN

-- This command did not return data, and it did not return any rows.

Statement: Delete Trigger

USE pubs

GO

CREATE TRIGGER trDelAuthor ON Authors

FOR DELETE

AS

RAISERRROR (“%d rows are going to be deleted from this table!”, 0, 1, @@rowcount)
-- This command did not return data, and it did not return any rows.

Statement: Insert Trigger

CREATE TRIGGER tig1 on Member

FOR INSERT

AS

DECLARE @Mem INT

SELECT @Mem = (SELECT COUNT(*) FROM Member)

BEGIN

PRINT 'There are '+ CAST(@Mem AS VARCHAR) +' Record in the Member Table'

END

-- This Trigger will count record.

Statement: Create Trigger with ENCRYPTION

CREATE TRIGGER Ins_Trig1 ON FlightSchedule

WITH ENCRYPTION

FOR INSERT

AS

IF (SELECT Flight_Day2 FROM FlightSchedule)<7

BEGIN

PRINT ‘Flight_Day2 cannot exceed 7 days’

ROLLBACK TRANSACTION

END
§ Reference Book §
Book Name:

· MCSE SQL Server 2000 Design Guide
Writer Name:

· Marc Israel

· J. Steven Jones

Book Name:

· Microsoft® SQL Server™ 2000 in 21 Days
Writer Name:

· Richard Waymire
· Rick Sawtell

Book Name:

· SQL Server™ 2000 Database Design and Implementation
By Microsoft Corporation

Book Name:

· Database Program SQL Server

Writer Name:

· Saad Abdul Wali

[image: image2][image: image3.png]

[image: image4.png]

Change Size

Change Size and File_Name

Change Database_Name

Data File

.MDF or .NDF

Log File

.LDF

Database

While a database can grow automatically, it can also shrink manually or automatically, depending on the options you activated and space usage.

To Remove File

To Empty File

StorID�
Payterms�
Qty�
�
6380�
Net 60�
5�
�
7066�
Net 30�
50�
�
7067�
Net 30�
40�
�
7067�
Net 30�
20�
�
7067�
Net 60�
10�
�
7131�
Net 30�
20�
�
7131�
Net 30�
25�
�
7131�
Net 60�
20�
�
7131�
Net 60�
25�
�
7131�
Net 60�
15�
�
7131�
Net 60�
25�
�
7896�
On invoice�
35�
�
8042�
Net 30�
30�
�
8042�
On invoice�
15�
�
8042�
On invoice�
10�
�

Relationship Diagram of Computer Management System

A view created from a horizontally and vertically partitioned table.

The code of to show TABLE & VIEW is same, because VIEW is also a TABLE.

